Regulatory mechanism of abscisic acid signaling
نویسندگان
چکیده
Abscisic acid (ABA) is a major phytohormone that mediates the adaptation of plants to environmental stresses such as drought and regulates developmental signals such as seed maturation. Studies on ABA signaling have progressed rapidly since the recent discovery of PYR/PYL receptor proteins as soluble ABA receptors. In plant cells, the receptor receives ABA to inhibit the phosphatase activity of type 2C protein phosphatase (PP2C), which is the major negative regulator in ABA signaling. SNF1-related protein kinase 2 (SnRK2) is then released from negative regulation by PP2C, turning on ABA signals by the phosphorylation of downstream factors. Insights into the regulation of PYR/PYL receptor proteins is therefore required in order to control drought-stress tolerance in plants. This article reviews the regulatory mechanism of the ABA receptor by ABA and its selective agonist. Structural analyses of PYR/PYL receptors have clearly elucidated the mechanism of ABA perception of the receptor or the mechanism of interaction with PP2C that leads to inhibition of its phosphatase activity. Moreover, the structures of PYR/PYL receptors complexed with pyrabactin, a selective ABA agonist, have provided the structural basis of ABA agonism and antagonism.
منابع مشابه
Transcriptional Response of Structural and Regulatory Genes Involved in Isoprene Biosynthesis and its Relation to Essential Oil Biosynthesis in Response to Salicylic Acid and Abscisic Acid in Mentha piperita L.
Background: In peppermint, precursors for the biosynthesis of monoterpenes are provided by plastidial methyl-erythritol-phosphate (MEP) pathways. Objective: In order to increase our understanding of terpene metabolism in M. piperita, the effect of salicylic acid (SA) and abscisic acid (ABA) in the modulation of expression pattern of genes involved in essential oil biosynthesis and secretion wa...
متن کاملComplex structures of the abscisic acid receptor PYL3/RCAR13 reveal a unique regulatory mechanism.
Abscisic acid (ABA) controls many physiological processes and mediates adaptive responses to abiotic stresses. The ABA signaling mechanisms for abscisic acid receptors PYR/PYL/RCAR (PYLs) were reported. However, it remains unclear whether the molecular mechanisms are suitable for other PYLs. Here, complex structures of PYL3 with (+)-ABA, pyrabactin and HAB1 are reported. An unexpected trans-hom...
متن کاملType 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis.
Abscisic acid (ABA) signaling is important for stress responses and developmental processes in plants. A subgroup of protein phosphatase 2C (group A PP2C) or SNF1-related protein kinase 2 (subclass III SnRK2) have been known as major negative or positive regulators of ABA signaling, respectively. Here, we demonstrate the physical and functional linkage between these two major signaling factors....
متن کاملRegulatory networks of the phytohormone abscisic acid.
Structurally similar to retinoic acid (RA), the phytohormone abscisic acid (ABA) controls many developmental and physiological processes via complicated signaling networks that are composed of receptors, secondary messengers, protein kinase/phosphatase cascades, transcription factors, and chromatin-remodeling factors. In addition, ABA signaling is further modulated by mRNA maturation and stabil...
متن کاملTargeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis.
CULLIN4-RING E3 ubiquitin ligases (CRL4s) regulate key developmental and stress responses in eukaryotes. Studies in both animals and plants have led to the identification of many CRL4 targets as well as specific regulatory mechanisms that modulate their function. The latter involve COP10-DET1-DDB1 (CDD)-related complexes, which have been proposed to facilitate target recognition by CRL4, althou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011